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I Persisting 3− 4σ tension between the standard model theory
and BNL measurement for muon g-2 ⇒ Possible hint for new
physics

I FNAL E989 will improve experimental precision of 0.54 ppm
by a factor of four in the coming years. First results very likely
by the end of this year.

I Current experimental uncertainty balanced with theory ⇒
theory uncertainty needs to be improved

I Theory uncertainty is dominated by two non-perturbative
QCD contributions, the hadronic vacuum polarization (HVP)
and the hadronic light-by-light scattering (HLbL) with similar
individual uncertainties.
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Isospin-symmetric limit: 2

with C(t) = 1
3

P
~x

P
j=0,1,2hJj(~x, t)Jj(0)i. With appro-

priate definition of wt, we can therefore write

aµ =
X

t

wtC(t) . (4)

The correlator C(t) is computed in lattice QCD+QED
with dynamical up, down, and strange quarks and non-
degenerate up and down quark masses. We compute the
missing contributions to aµ from bottom quarks and from
charm sea quarks in perturbative QCD [13] by integrating
the time-like region above 2 GeV and find them to be
smaller than 0.3 ⇥ 10�10.

We tune the bare up, down, and strange quark masses
mup, mdown, and mstrange such that the ⇡0, ⇡+, K0, and
K+ meson masses computed in our calculation agree with
the respective experimental measurements [14]. The lat-
tice spacing is determined by setting the ⌦� mass to
its experimental value. We perform the calculation as a
perturbation around an isospin-symmetric lattice QCD
computation [15, 16] with two degenerate light quarks
with mass mlight and a heavy quark with mass mheavy

tuned to produce a pion mass of 135.0 MeV and a kaon
mass of 495.7 MeV [17]. The correlator is expanded in
the fine-structure constant ↵ as well as �mup, down =
mup, down � mlight, and �mstrange = mstrange � mheavy.
We write

C(t) = C(0)(t) + ↵C
(1)
QED(t) +

X

f

�mfC
(1)
�mf

(t)

+ O(↵2, ↵�m,�m2) , (5)

where C(0)(t) is obtained in the lattice QCD calculation
at the isospin symmetric point and the expansion terms
define the QED and strong isospin-breaking (SIB) correc-
tions, respectively. We keep only the leading corrections
in ↵ and �mf which is su�cient for the desired precision.

We insert the photon-quark vertices perturbatively
with photons coupled to local lattice vector currents mul-
tiplied by the renormalization factor ZV [17]. We use
ZA ⇡ ZV for the charm [22] and QED corrections. The
SIB correction is computed by inserting scalar operators
in the respective quark lines. The procedure used for
e↵ective masses in such a perturbative expansion is ex-
plained in Ref. [18]. We use the finite-volume QEDL

prescription [19] and remove the universal 1/L and 1/L2

corrections to the masses [20] with spatial lattice size L.
The e↵ect of 1/L3 corrections is small compared to our
statistical uncertainties. We find �mup = �0.00050(1),
�mdown = 0.00050(1), and �mstrange = �0.0002(2) for
the 48I lattice ensemble described in Ref. [17]. The shift
of the ⌦� mass due to the QED correction is significantly
smaller than the lattice spacing uncertainty and its e↵ect
on C(t) is therefore not included separately.

Figure 1 shows the quark-connected and quark-
disconnected contributions to C(0). Similarly, Fig. 2
shows the relevant diagrams for the QED correction to

FIG. 1. Quark-connected (left) and quark-disconnected
(right) diagram for the calculation of aHVP LO

µ . We do not
draw gluons but consider each diagram to represent all orders
in QCD.
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Figure 6: Displacement probability for 48c run 1.
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Figure 7: Mass-splitting and HVP 1-photon diagrams. In the former the dots
are meson operators, in the latter the dots are external photon vertices. Note
that for the HVP some of them (such as F with no gluons between the two
quark loops) are counted as HVP NLO instead of HVP LO QED corrections.
We need to make sure not to double-count those, i.e., we need to include the
appropriate subtractions! Also note that some diagrams are absent for flavor
non-diagonal operators.
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FIG. 2. QED-correction diagrams with external pseudo-scalar
or vector operators.

the meson spectrum and the hadronic vacuum polariza-
tion. The external vertices are pseudo-scalar operators
for the former and vector operators for the latter. We
refer to diagrams S and V as the QED-connected and to
diagram F as the QED-disconnected contribution. We
note that only the parts of diagram F with additional
gluons exchanged between the two quark loops contribute
to aHVP LO

µ as otherwise an internal cut through a single
photon line is possible. For this reason, we subtract the
separate quantum-averages of quark loops in diagram F.
In the current calculation, we neglect diagrams T, D1,
D2, and D3. This approximation is estimated to yield an
O(10%) correction for isospin splittings [21] for which the
neglected diagrams are both SU(3) and 1/Nc suppressed.
For the hadronic vacuum polarization the contribution of
neglected diagrams is still 1/Nc suppressed and we adopt
a corresponding 30% uncertainty.

In Fig. 3, we show the SIB diagrams. In the calcu-
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Figure 8: Mass-counterterm diagrams for mass-splitting and HVP 1-photon
diagrams. Diagram M gives the valence, diagram R the sea quark mass shift
e↵ects to the meson masses. Diagram O would yield a correction to the HVP
disconnected contribution (that likely is very small).
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FIG. 3. Strong isospin-breaking correction diagrams. The
crosses denote the insertion of a scalar operator.

QED corrections:
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P
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priate definition of wt, we can therefore write

aµ =
X

t

wtC(t) . (4)

The correlator C(t) is computed in lattice QCD+QED
with dynamical up, down, and strange quarks and non-
degenerate up and down quark masses. We compute the
missing contributions to aµ from bottom quarks and from
charm sea quarks in perturbative QCD [13] by integrating
the time-like region above 2 GeV and find them to be
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tice spacing is determined by setting the ⌦� mass to
its experimental value. We perform the calculation as a
perturbation around an isospin-symmetric lattice QCD
computation [15, 16] with two degenerate light quarks
with mass mlight and a heavy quark with mass mheavy

tuned to produce a pion mass of 135.0 MeV and a kaon
mass of 495.7 MeV [17]. The correlator is expanded in
the fine-structure constant ↵ as well as �mup, down =
mup, down � mlight, and �mstrange = mstrange � mheavy.
We write

C(t) = C(0)(t) + ↵C
(1)
QED(t) +

X

f

�mfC
(1)
�mf

(t)

+ O(↵2, ↵�m,�m2) , (5)
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define the QED and strong isospin-breaking (SIB) correc-
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in ↵ and �mf which is su�cient for the desired precision.

We insert the photon-quark vertices perturbatively
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of the ⌦� mass due to the QED correction is significantly
smaller than the lattice spacing uncertainty and its e↵ect
on C(t) is therefore not included separately.

Figure 1 shows the quark-connected and quark-
disconnected contributions to C(0). Similarly, Fig. 2
shows the relevant diagrams for the QED correction to
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in QCD.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0  10  20  30  40  50  60  70
r

Resulting two-point p(d) from p(r)=(1.5 + r)-5

Figure 6: Displacement probability for 48c run 1.

(a) V (b) S (c) T (d) D1 (e) D2

(f) F (g) D3

Figure 7: Mass-splitting and HVP 1-photon diagrams. In the former the dots
are meson operators, in the latter the dots are external photon vertices. Note
that for the HVP some of them (such as F with no gluons between the two
quark loops) are counted as HVP NLO instead of HVP LO QED corrections.
We need to make sure not to double-count those, i.e., we need to include the
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FIG. 2. QED-correction diagrams with external pseudo-scalar
or vector operators.
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Strong isospin-breaking corrections:

2

with C(t) = 1
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X
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wtC(t) . (4)
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I Need to calculate at 1-2 per-mille precision to match experimental
precision after Fermilab E989. Current status: first results around
1%.

I Further error reduction by factor of 10 is a challenging task for the
next 5-10 years.

I Many improvements for improved statistical and systematic control
have already been developed, e.g., improved bounding method
(RBC/UKQCD) for light-quark connected isospin symmetric
contribution:
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Future:

I Need statistics dominated error budgets!

I Simulations at finer lattice spacings a with a−1 ≈ 5 GeV
desired! See related computational LoI with algorithmic
developments to accelrate this.

I Within RBC/UKQCD, simulations are already only at physical
pion mass, so no chiral extrapolation needed. High-precision
control of QED and SIB effects crucial.

I Combined R-ratio/lattice QCD approaches as proposed by
RBC/UKQCD 2018 may play a crucial role to scrutinize and
improve the estimates. Euclidean time windows also serve as
tools for cross-checks.
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Hadronic light-by-light scattering:

q = p′ − p, ν

p p′

Figure 73: HLbL contribution to the muon g � 2. The shaded blob represents all possible intermediate hadronic states. Reprinted from Ref. [112].

xsrc xsnky′, σ′ z′, κ′ x′, ρ′

xop, ν

z, κ
y, σ x, ρ

xsrc xsnkz′, κ′ y′, σ′ x′, ρ′

xop, ν

z, κ y, σ x, ρ

Figure 74: Diagrams contributing to HLbL scattering at order O(↵3). Quark connected (left) and leading disconnected (right) diagrams are shown.
Reprinted from Ref. [113].

5. Lattice approaches to HLbL

N. Asmussen, T. Blum, A. Gérardin, M. Hayakawa, R. J. Hudspith, T. Izubuchi, L. Jin, C. Lehner, H. B. Meyer,
A. Ny↵eler

5.1. Introduction

The HLbL scattering contribution to the anomalous magnetic moment of the muon is depicted in Fig. 73, where
the external soft and on-shell photon interacts through a hadronic blob with three o↵-shell photons that then couple
to the muon. In this section, we discuss lattice QCD approaches to calculating this contribution, which allow for a
first-principles calculation with systematically improvable uncertainty.

In a perturbative framework for QED, the HLbL scattering contribution to the muon g � 2 in a lattice QCD
calculation arises at order ↵3 from the diagrams shown in Figs. 74 and 75. They are classified as connected or
disconnected depending on whether the quark lines are (dis-)connected. Though they are not shown explicitly, it is
understood that for a given diagram quark–gluon interactions to all orders are included. In a lattice QCD calculation,
these additional diagrams are generated by statistical sampling from a gauge-configuration ensemble. The diagrams
in Fig. 74 dominate the HLbL contribution. Because at least one loop has a single photon attached, each of the sub-
leading disconnected diagrams shown in Fig. 75 vanish in the S U(3) flavor limit since Qu +Qd +Qs = 0, and each are
quark-mass and color suppressed. The total aHLbL

µ comes from summing the contributions from the diagrams shown
in Figs. 74 and 75 and permutations generated by attaching the three photons to the muon line in six possible ways.

5.2. HLbL on the lattice

The HLbL contribution to the muon g � 2 has been calculated from first principles using the lattice regularization
by RBC and later by the Mainz group. The first successful such calculation treated QED nonperturbatively [110].
Subsequent calculations that treat QED perturbatively [112, 113, 694, 695] have proven more e�cient. Furthermore,
the calculations are now performed in coordinate space by both groups, which is most natural on the lattice, and a

140

First ab-initio result this year (RBC/UKQCD
PRL124(2020)132002):

aHLbL
µ 1010 = 7.87(3.06)stat(1.77)sys (1)

For this quantity it will suffice to reduce the uncertainty to
O(10%) in the next 5-10 years.
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Future:

I Our previous result used a finite-volume regulator for the photons,
will focus on infinite-volume photons coupled to finite-volume quark
correlators.

I This removes large power-law finite-volume errors but requires
special attention to control statistical uncertainties originating from
long-range contributions.

I For this we will re-use successful ideas of our HVP projects with
regards to full low-mode averaging using a locally coherent Dirac
eigenmodes representation.

I We aim to also calculate the long-distance part of the neutral
pion-pole contribution separately to further reduce the statistical
noise and finite-volume dependence.

I In the current calculation some sub-leading diagrams are only
estimated to be small, we will verify this explicitly.

I We have previously shown that different infinite-volume regulators
can be used to reduce systematic uncertainties. We will explore this
further.
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Summary of precision goals for next 5-10 years:

HVP: 1%→ 0.1%

HLbL: 44%→ 10%

What is required to succeed? We need continued access to
large-scale computing resources in the US and dedicated support
for the lattice QCD project.
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